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Abstract Bifurcations of spatially nonhomogeneous periodic orbits and steady state
solutions are rigorously proved for a reaction–diffusion system modeling Schnaken-
berg chemical reaction. The existence of these patterned solutions shows the richness
of the spatiotemporal dynamics such as oscillatory behavior and spatial patterns.
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1 Introduction

Schnakenberg model [13] is a basic differential equation model to describe an auto-
catalytic chemical reaction with possible oscillatory behavior. The trimolecular reac-
tions between two chemical products X,Y and two chemical source A, B are in the
following form:
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A � X, B −→ Y, 2X + Y −→ 3X. (1.1)

Using the law of mass action, one can obtain a system of two reaction–diffusion
equations for the concentrations u(x, t) and v(x, t) of the chemical products X and Y
describing the reactions in (1.1). The non-dimensional form of the equations is

ut − d1�u = a − u + u2v, vt − d2�v = b − u2v.

In the above equations d1, d2 are the diffusion coefficients of the chemicals X,Y , and
a, b are the concentrations of A and B. It is also assumed that A and B are in abundance
so a and b remain as constants. Because of its algebraic simplicity, Schnakenberg
model has been used by many people as an exemplifying reaction–diffusion system
to study spatiotemporal pattern formation [2,11,12].

In this paper we consider the reaction–diffusion Schnakenberg model in a bounded
domain �:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ut − d1�u = a − u + u2v, x ∈ �, t > 0,
vt − d2�v = b − u2v, x ∈ �, t > 0,
u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ �,
∂u

∂n
= ∂v

∂n
= 0, x ∈ ∂�, t > 0.

(1.2)

Here � ⊂ R
N, (N ≥ 1) is a bounded connected domain with a smooth boundary

∂�; u(x, t) and v(x, t) are the concentrations of the chemical products X and Y at
time t and location x ∈ �; a no-flux boundary condition is assumed so that the
chemical reactions are in a closed environment; a, b, d1, d2 are positive constants and
the initial concentrations u0, v0 ∈ C(�) are non-negative functions. For simplicity, in
this paper we only consider the case N = 1 and � = (0, lπ) for some l > 0.

In this paper, we analyze the stability of the unique positive steady state solution
(u∗, v∗). When (u∗, v∗) loses its stability, we study the associated Hopf bifurcations
and steady state bifurcations which give rise to temporal oscillations or non-constant
stationary patterns. For simplicity of calculation, we use two new parameters:

b + a = β, b − a = α. (1.3)

We fix the value of β > 0, and vary the value of α in (−β, β). Our main results can
be summarized as follows (a more detailed version is in Sect. 4):

1. When β is large, then the unique positive steady state (u∗, v∗) is locally asymptot-
ically stable for any α ∈ (−β, β). Hence pattern formation is not likely.

2. If 0 < β < 1 and d2/d1 is small, then (u∗, v∗) is locally asymptotically stable for
α ∈ (−β, β3), and it loses the stability at α = β3 through a Hopf bifurcation. In
this case, a time-periodic pattern is likely to emerge for α ∈ (β3, β).

3. If 0 < β < 1 and d2/d1 is large, then there exists an αS
j ∈ (0, β3) such that

(u∗, v∗) is locally asymptotically stable for α ∈ (−β, αS
j ), and it loses the stability

at α = αS
j through a steady state bifurcation. In this case, a stationary spatially

non-homogenous pattern is likely to appear for α ∈ (αS
j , β).
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In Sect. 2, we do a Hopf bifurcation analysis with parameter α, and in Sect. 3, we ana-
lyze the steady state solution bifurcations. Some numerical simulations and a summary
of change of dynamics are given in Sect. 4. Our analysis follows the approach given in
Yi et al. [22] for diffusive predator-prey systems, and similar approach has also been
used in [3,6,9,16,19–21] for other reaction–diffusion models. Note that both patterns
described above were first considered by Turing [15] in his seminal work 60 years ago.

There have been some previous work on reaction–diffusion Schnakenberg model. It
has been shown in [5,17,18] that for small values of d1 the system (1.2) exhibits various
stationary multi-spot and spike patterns. Our work explains such multi-spike solutions
from the view of bifurcation. Very recently the steady state solutions of (1.2) (or more
general form) have also been considered in [2,8], and the Hopf bifurcations of (1.2) has
been investigated in [19]. Our results here use a simpler parametrization (1.3) which
simplifies the expression of many calculations. Our results not only sharpen many
previous results, but also is the only one to provide a panoramic view of the dynamics
of (1.2). We also mentioned that it is known that the limit cycle of the corresponding
ODE system of (1.2) is unique (see [4]).

In the paper we use (uα, vα) to denote the unique constant steady state solution of
(1.2). We denote by N the set of all the positive integers, and N0 = N ∪ {0}.

2 Hopf bifurcations

In this section, we consider the Hopf bifurcations for the Schnakenberg model. In
particular we derive an explicit algorithm for direction of Hopf bifurcation and stability
of the bifurcating periodic solutions for the reaction–diffusion system of Schnakenberg
model with Neumann boundary condition. While our calculations can be carried over
to higher spatial domains, we restrict ourselves to the case of one-dimensional spatial
domain (0, lπ), for which the structure of the eigenvalues is clear. The Schnakenberg
model in the spatial domain � = (0, lπ) is in form

⎧
⎪⎪⎨

⎪⎪⎩

ut − d1uxx = a − u + u2v, x ∈ (0, lπ), t > 0,
vt − d2vxx = b − u2v, x ∈ (0, lπ), t > 0,
u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ (0, lπ),
ux (0, t) = ux (lπ, t) = vx (0, t) = vx (lπ, t) = 0, t > 0.

(2.1)

First we consider the corresponding kinetic system of (2.1).

⎧
⎨

⎩

u′ = a − u + u2v, t > 0,
v′ = b − u2v, t > 0,
u(0) = u0 > 0, v(0) = v0 > 0.

(2.2)

An equilibrium point (u, v) of (2.2) satisfies

{
a − u + u2v = 0,
b − u2v = 0.
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By a simple calculation,

(

a + b,
b

(a + b)2

)

is the unique positive equilibrium point

of (2.2). Let

a + b = β, b − a = α.

Then a = β − α

2
, b = β + α

2
, and a > 0, b > 0 is equivalent to β > 0 and

β > α > −β. We shall rewrite the equilibrium point by (β,
β + α

2β2 ) ≡ (uα, vα). In

the following we choose a fixed parameter β > 0, and use α as the main bifurcation

parameter. The Jacobian matrix of system (2.2) evaluated at (β,
β + α

2β2 ) is

L0(α) =
⎛

⎜
⎝

α

β
β2

−1 − α

β
−β2

⎞

⎟
⎠ . (2.3)

The characteristic equation of L0(α) is

μ2 − T (α)μ+ D(α) = 0, (2.4)

where T (α) = −β2 + α

β
, D(α) = β2. The eigenvalues μ(α) of L0(α) are given by

μ(α) = T (α)± √
T 2(α)− 4D(α)

2
.

A Hopf bifurcation value α satisfies the following condition:

T (α) = 0, D(α) > 0, and T ′(α) 
= 0.

Clearly we always have D(α) > 0, and T (α) = 0 implies α = β3. Finally T ′(α) =
1/β for any β > 0. Then α = β3 is the only Hopf bifurcation point for (2.2). Since
we assume that β > α, hence when 0 < β < 1, there exists a unique Hopf bifurcation
point α = β3. When β ≥ 1 and β > α, the unique equilibrium point of (2.2) is always
locally asymptotically stable.

Next we consider Hopf bifurcations from the constant steady state (uα, vα) of the
reaction–diffusion system (here we use equivalent parameters α and β)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ut = d1uxx + β − α

2
− u + u2v, x ∈ (0, lπ), t > 0,

vt = d2vxx + β + α

2
− u2v, x ∈ (0, lπ), t > 0,

ux (x, t) = vx (x, t) = 0, x = 0, lπ, t > 0,
u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ (0, lπ).

(2.5)
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Again (2.5) has a unique positive constant steady state (uα, vα) = (β,
α + β

2β2 ). We

choose the fixed parameters β, l properly, and use α as the main bifurcation parameter.
Define

X = {(u, v) ∈ H2[(0, lπ)] × H2[(0, lπ)]| u′(0) = v′(0) = u′(lπ) = v′(lπ) = 0}.

The linearized operator of system (2.5) at (β,
α + β

2β2 ) is

L(α) =

⎛

⎜
⎜
⎝

d1
∂2

∂x2 + α

β
β2

−1 − α

β
d2
∂2

∂x2 − β2

⎞

⎟
⎟
⎠ .

It is well-known that eigenvalue problems

−ψ ′′ = μψ, x ∈ (0, lπ), ψ ′(0) = ψ ′(lπ) = 0,

has eigenvalues μn = n2/ l2(n = 0, 1, 2, . . .), with corresponding eigenfunctions

ψn(x) = cos
n

l
x . Let

(
φ

ϕ

)

=
∞∑

n=0

(
an

bn

)

cos
n

l
x (2.6)

be an eigenfunction for L(α) with eigenvalue μ(α), that is, L(α)(φ, ϕ)T =
μ(α)(φ, ϕ)T . From [22], there exists n ∈ N0 such that Ln(α)(an, bn)

T =
μ(α)(an, bn)

T , where Ln is define by

Ln(α) =

⎛

⎜
⎜
⎝

−d1n2

l2 + α

β
β2

−1 − α

β
−d2n2

l2 − β2

⎞

⎟
⎟
⎠ . (2.7)

The characteristic equation of Ln(α) is

μ2 − Tn(α)μ+ Dn(α) = 0, n = 0, 1, 2, . . . , (2.8)

where

Tn(α) := α

β
− β2 − n2

l2 (d1 + d2), (2.9)

Dn(α) := d1d2
n4

l4 +
(

d1β
2 − αd2

β

)
n2

l2 + β2. (2.10)

123



2006 J Math Chem (2013) 51:2001–2019

and the eigenvalues μ(α) of Ln(α) are given by

μ(α) = Tn(α)± √
T 2

n (α)− 4Dn(α)

2
, n = 0, 1, 2, . . . .

We identify the Hopf bifurcation value α satisfying the following condition.

(H1) There exists n ∈ N0, such that

Tn(α) = 0, Dn(α) > 0, Tj (α) 
= 0, D j (α) 
= 0, for any j 
= n.

Let the unique pair of complex eigenvalues near the imaginary axis be γ (α)±
iω(α), then the following transversality condition holds:

γ ′(α) 
= 0. (2.11)

For j ∈ N0, define

αH
j = β3 + β

j2

l2 (d1 + d2), (2.12)

then Tj (α
H
j ) = 0 and Ti (α

H
j ) 
= 0 for i 
= j . Define

ln = n

√
d1 + d2

1 − β2 , n ∈ N0. (2.13)

Then for ln < l ≤ ln+1, we have exactly n + 1 possible Hopf bifurcation points
α = αH

j (0 ≤ j ≤ n) defined by (2.12), and these points satisfy that

αH
0 (=β3) < αH

1 < · · · < αH
n < β.

Next we verify whether Di (α
H
j ) 
= 0 for all i ∈ N0, and in particular, D j (α

H
j ) > 0.

We claim that if

(
√

2 − 1)

√
d2

d1
< β < 1, (2.14)

then Di (α
H
j ) > 0 for any i ∈ N0 and αH

j ∈ (0, β). Indeed since αH
j /β < 1, then

from (2.14),

Di (α
H
j ) = p2

i d1d2 + pi

(

d1β
2 − αH

j d2

β

)

+ β2

> p2
i d1d2 + pi (d1β

2 − d2)+ β2, (2.15)
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where pi = i2

l2 . If β ≥ √
d2/d1, then d1β

2 − d2 ≥ 0 and Di (α
H
j ) > 0 from (2.15). If

(
√

2 − 1)

√
d2

d1
< β <

√
d2

d1
,

then from (2.15),

Di (α
H
j ) > p2

i d1d2 + pi (d1β
2 − d2)+ β2 ≥ β2 − d1d2

4

(
β2

d2
− 1

d1

)2

= − d1

4d2

(

β2 − (
√

2 + 1)2
d2

d1

)(

β2 − (
√

2 − 1)2
d2

d1

)

> 0.

Finally let the eigenvalues close to the pure imaginary one near at α = αH
j be γ (α)±

iω(α). Then

γ ′(αH
j ) = T ′

j (α
H
j )

2
= 1

β
> 0.

Now by using the Hopf bifurcation theorem in [22], we have

Theorem 2.1 Let ln as defined in (2.13), and assume that ln < l ≤ ln+1 for some
n ∈ N0. Suppose that d1, d2 and β satisfy (2.14). Then for (2.5), there exist n +1 Hopf
bifurcation points αH

j (0 ≤ j ≤ n) defined by (2.12), satisfying

β3 = αH
0 < αH

1 < αH
2 < · · · < αH

n < β.

At each α = αH
j , the system (2.5) undergoes a Hopf bifurcation, and the bifurcat-

ing periodic orbits near (α, u, v) =
(

αH
j , β,

αH
j + β

2β2

)

can be parameterized as

(α(s), u(s), v(s)), so that α(s) ∈ C∞ in the form of α(s) = αH
j + o(s), s ∈ (0, δ) for

some small δ > 0, and

⎧
⎪⎨

⎪⎩

u(s)(x, t) = β + s
(

ane2π i t/T (s) + ane−2π i t/T (s)
)

cos
n

l
x + o(s),

v(s)(x, t) = αH
j + β

2β2 + s
(

bne2π i t/T (s) + bne−2π i t/T (s)
)

cos
n

l
x + o(s),

(2.16)

where (an, bn) is the corresponding eigenvector, and T (s) = 2π/
√

D j (α
H
j ) + o(s)

(D j is defined in (2.10)). Moreover

1. The bifurcating periodic orbits from α = αH
0 = β3 are spatially homogeneous,

which coincide with the periodic orbits of the corresponding ODE system;
2. The bifurcating periodic orbits from α = αH

j are spatially nonhomogeneous.
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Next we follow the methods in [22] to calculate the direction of Hopf bifurcation
and the stability of the bifurcating periodic orbits bifurcating from α = αH

0 . We have
the following result.

Theorem 2.2 For equation (2.5), when 0 < β < 1, the Hopf bifurcation at αH
0 =

β3 is supercritical. That is, for a small ε > 0 and α ∈ (αH
0 , α

H
0 + ε), there is a

small amplitude spatially homogenous periodic orbit, and this periodic orbit is locally
asymptotically stable orbits.

Proof Here we follow the notations and calculations in [22]. When α = αH
0 = β3,

Eq. (2.8) has a pair of purely imaginary eigenvaluesμ = ±iβ. For the Jacobian matrix

L0(α) =
(

β2 β2

−1 − β2 −β2

)

, (2.17)

an eigenvector q of eigenvalue iβ satisfying

L0q = iβq

can be chosen as q := (a0, b0)
T = (−β, β − i)T . Define the inner product in XC by

〈U1,U2〉 =
lπ∫

0

(u1u2 + v1v2)dx,

where Ui = (ui , vi )
T ∈ X2

C
, i = 1, 2. We choose an associated eigenvector q∗ for

the eigenvalue μ = −iβ satisfying

L∗
0q∗ = −iβq∗, 〈q∗, q〉 = 1, 〈q∗, q̄〉 = 0.

Then q∗ := (a∗
0 , b∗

0)
T =

(−1 − iβ

2βlπ
,

−i

2lπ

)T

.

Let f (u, v) = a−u +u2v and g(u, v) = b−u2v, by calculation, at

(

β,
β + β3

2β2

)

,

we have
⎧
⎪⎪⎨

⎪⎪⎩

guu = − fuu, guv = − fuv, guuv = − fuuv,

fvv = fvvv = fuvv = fuuu = guuu = gvv = guvv = gvvv = 0,

fuu = 1 + β2

β
, fuv = 2β, fuuv = 2.

(2.18)

By direct calculation, it follows that

c0 = fuua2
0 + 2 fuva0b0 + fvvb2

0 = β − 3β3 + 4β2i,

d0 = guua2
0 + 2guva0b0 + gvvb2

0 = −c0.

e0 = fuu |a0|2 + fuv(a0b0 + a0b0)+ fvv|b0|2 = β − 3β3,
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f0 = guu |a0|2 + guv(a0b0 + a0b0)+ gvv|b0|2 = −e0.

g0 = fuuu |a0|2a0+ fuuv(2|a0|2b0+a2
0b0)+ fuvv(2|b0|2a0 + b2

0a0)a = 6β3 − 2β2i,

h0 = guuu |a0|2a0 + guuv(2|a0|2b0 + a2
0b0)+ guvv(2|b0|2a0 + b2

0a0) = −g0.

Denote

Qqq =
(

c0
d0

)

, Qqq̄ =
(

e0
f0

)

, Cqqq̄ =
(

g0
h0

)

. (2.19)

Then

〈q∗, Qqq〉 =
lπ∫

0

(−1 + iβ

2βlπ
c0 + i

2lπ
d0

)

dx = − c0

2β
,

〈q∗, Qqq̄〉 =
lπ∫

0

(−1 + iβ

2βlπ
e0 + i

2lπ
f0

)

dx = − e0

2β
,

〈q∗,Cqqq̄〉 =
lπ∫

0

(−1 + iβ

2βlπ
g0 + i

2lπ
h0

)

dx = − g0

2β
,

〈q̄∗, Qqq〉 =
lπ∫

0

(−βc0 + (β + i)d0) dx = − c0

2β
,

〈q̄∗, Qqq̄〉 =
lπ∫

0

(−βe0 + (β + i) f0) dx = − e0

2β
,

〈q∗, Qqq〉 = 〈q̄∗, Qqq〉,
〈q∗,Cqqq̄〉 = 〈q̄∗, Qqq̄〉.

Hence

H20 = (c0, d0)
T + c0

2β
(a0, b0)

T + c0

2β
(a0, b0)

T

= c0(1,−1)T + c0(−1, 1)T = 0,

H11 = (e0, f0)
T + e0

2β
(a0, b0)

T + e0

2β
(a0, b0)

T

= e0(1,−1)T + e0(−1, 1)T = 0,

which implies that ω20 = ω11 = 0, then

〈q∗, Qω11q〉 = 〈q∗, Qω20q̄〉 = 0. (2.20)
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Fig. 1 Phase portraits and periodic orbits for the ODE system corresponding to (2.5) when β = 0.9. The
horizontal axis is u, and the vertical axis is v. Left: α = 0.74, a small amplitude limit cycle; Right: α = 0.88,
a large amplitude limit cycle. Here the Hopf bifurcation point αH

0 = 0.729

Thus

Re(c1(α)) = Re

{
i

2ω0
〈q∗, Qqq〉 · 〈q∗, Qqq̄〉 + 1

2
〈q∗,Cqqq̄〉

}

= −1 − 3β2

2
− 3β2

2
= −1

2
,

Moreover Re(c1(α)) < 0, since T (α) = −β2 + α

β
, hence T ′(α) = 1

β
> 0. Therefore

when α > αH
0 = β3, the equilibrium point of (2.2) is unstable, and the system must

have a periodic orbit by the Poincaré–Bendixson theorem. From the result in [4], the
periodic orbit must be unique. From calculation above, the Hopf bifurcation atα = αH

0
is supercritical; and when α ∈ (αH

0 , α
H
0 + ε), the bifurcating periodic orbit is locally

asymptotically stable. ��
The periodic orbits of system (2.2) for some parameters are shown in Fig. 1, and a

bifurcation diagram of the periodic orbits is shown in Fig. 2.

3 Steady state bifurcation

In this section, we consider the steady state bifurcations of the system (2.1). We
consider the system of two coupled ordinary differential equations:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d1u′′ + β − α

2
− u + u2v = 0, x ∈ (0, lπ),

d2v
′′ + β + α

2
− u2v = 0, x ∈ (0, lπ),

u′(0) = u′(lπ) = v′(0) = v′(lπ) = 0,

(3.1)

which is a special case of more general steady state equation for a higher dimensional
domain:
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Fig. 2 Bifurcation of periodic orbits for the ODE system corresponding to (2.5) when β = 0.9. The
horizontal axis isα, and the vertical axis is max v(t) for the limit cycle (u(t), v(t)). Here the Hopf bifurcation
point αH

0 = 0.729

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−d1�u = β − α

2
− u + u2v, x ∈ �,

−d2�v = β + α

2
− u2v, x ∈ �,

∂u

∂n
= ∂v

∂n
= 0, x ∈ ∂�.

(3.2)

The following a priori estimate can be easily established via maximum principle,
and we omit the proof (see [2,8]).

Lemma 3.1 Suppose that β > 0 and β > α > −β. Then any positive solution (u, v)
of (3.2) satisfies

β − α

2
≤ u(x) ≤ β + 2d2(β + α)

d1(β − α)2
, x ∈ �, (3.3)

and

α + β

2

[

β + 2d2(β + α)

d1(β − α)2

]2 ≤ v(x) ≤ 2(β + α)

(β − α)2
, x ∈ �. (3.4)

Recall Dn(α) and Tn(α) defined in (2.9) and (2.10). Now we identify steady state
bifurcation valuesα of steady state system (3.1), which satisfy the following condition:

(H2) there exists n ∈ N0 such that

Dn(α) = 0, Tn(α) 
= 0, D j (α) 
= 0, Tj (α) 
= 0, for any j 
= n; (3.5)
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and

d

dα
Dn(α) 
= 0. (3.6)

Apparently, D0(α) = β2 
= 0 for α > 0, hence we only consider n ∈ N. In the
following we fix an arbitrary β > 0, to determine α values satisfying condition (H2),
we notice that Dn(α) = 0 is equivalent to

D(α, p) = d1d2 p2 +
(

d1β
2 − αd2

β

)

p + β2 = 0, (3.7)

where p = n2

l2 . Solving α from (3.7), we obtain that

α(p) = d1βp + β3

d2 p
+ d1

d2
β3. (3.8)

We also solve p from the equation (3.7), and we have

p = p±(α) = αd2 − d1β
3 ± √

(d1β3 − αd2)2 − 4d1d2β4

2d1d2β
. (3.9)

Since we require that α < β, we define

l̃n,+ := n
√

p+(β)
, l̃n,− := n

√
p−(β)

, n = 1, 2, . . . , (3.10)

where p± are defined in (3.9). For a fixed n ∈ N, if l̃n,+ < l < l̃n,−, then there exists
a unique αS

n := α(n2/ l2) such that Dn(α
S
n ) = 0. These points αS

n are potential steady
state bifurcation points.

The function α(p) and the functions p±(α) satisfy the following properties.

Lemma 3.2 Define

p∗ = β√
d1d2

, α∗ = β2

√
d1

d2

(

2 + β

√
d1

d2

)

. (3.11)

Then the function α(p) : (0,∞) → R
+ defined in (3.8) has a unique critical point at

p∗, which is the global minimum of α(p) in (0,∞), and lim
p→0+ α(p) = lim

p→∞α(p) =
∞. Consequently for α ≥ α∗ := α(p∗), p±(α) are well defined as in (3.9); p+(α) is
strictly increasing and p−(α) is strictly decreasing, and p+(α∗) = p−(α∗) = p∗.

Proof Differentiating D(α(p), p) = 0 twice and letting α′(p) = 0, we obtain that

d

dp
D(α(p), p) = 2pd1d2 + d1β

2 − α′(p)p d2

β
+ α(p)

d2

β
= 0,
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d2

dp2 D(α(p), p) = 2d1d2 − α′′(p)p d2

β
− α′(p)2d2

β
= 0,

If α′(p) = 0, then α′′(p)p d2

β
− 2d1d2 = 0, which is

α′′(p) = 2d1β

p
> 0.

Therefore for any critical point p of α(p), we must have α′′(p) > 0, and thus the
critical point must be unique and it is a local minimum point.

It is easy to see that lim
p→0+ α(p) = lim

p→∞α(p) = ∞, hence the unique critical

point p∗ is the global minimum point. Since (3.9) is also obtained by (3.7), then
� = {(α(p), p) : 0 < p < ∞} and the curve (α, α±(p)) are identical. Then the
properties of α(p) determine the monotonicity and limiting behavior of p±(α). ��

From Lemma 3.2, if for some i, j with i < j , we have α(pi ) = α(p j ), then
p−(αS

i ) = p+(αS
j ) must hold. In this case, for α = αS

i = αS
j , 0 is not a simple

eigenvalue of L(α), and we shall not consider bifurcations at such points. We notice
that, from the properties of p±(α) in Lemma 3.2, the multiplicity of 0 as an eigenvalue
of L(α) is at most 2. On the other hand, it is also possible that some αS

i = αH
j (a Hopf

bifurcation point). So the dimension of center manifold of the steady state (uα, vα)
can be from 1 to 4. Following an argument in [22], we can prove that there are only
countably many l > 0, in fact only finitely many l ∈ (0,M) for any given M > 0,
such that α = αS

i = αH
j or αS

i = αS
j for these l and i, j ∈ N. We define the set of

these l to be

L E ={l > 0 : α(i2/ l2)=α( j2/ l2) or α(i2/ l2)= α̃( j2/ l2), α∈[α∗,∞), i, j ∈N},
(3.12)

where α(p) is the function defined in (3.8), and

α̃(p) = β3 + β(d1 + d2)p, (3.13)

following (2.12). Then the points in L E can be arranged as a sequence whose only

limit point is ∞. Finally we show that
d

dα
D j (α

S
j ) 
= 0. By direct calculation, we have

d

dα
D j (α

S
j ) = −p j

d2

β
< 0, p j = j2

l2 .

Now we state the main result about the steady state solution bifurcation of (3.1).

Theorem 3.3 Assume that

0 < β < (
√

2 − 1)

√
d2

d1
, (3.14)

123



2014 J Math Chem (2013) 51:2001–2019

and let n ∈ N. Suppose that l ∈ (̃ln,+, l̃n,−) \ L E , where l̃n,± is defined in (3.10)

and L E is a countable subset of R
+ defined in (3.12). Then αS

n = α(
n2

l2 ) satisfies

α∗ < αS
n < β, and α = αS

n is a bifurcation point for (3.1). Moreover,

1. There exists a smooth curve�n ∈ C∞ of positive solutions of (3.1) bifurcating from
(α, u, v) = (αS

n , uαS
n
, vαS

n
), with �n contained in a global branch Cn of positive

solutions of (3.1).
2. Near (α, u, v) = (αS

n , uαS
n
, vαS

n
), �n = {(αn(s), un(s), vn(s)) : s ∈ (−ε, ε)},

where un(s) = β+san cos(nx/ l)+sψ1,n(s), vn(s) = β + αS
n

2β2 +sbn cos(nx/ l)+
sψ2,n(s), for s ∈ (−ε, ε) for some C∞ smooth functions αn, ψ1,n, ψ2,n such that
αn(0) = αS

n , ψ1,n(0) = ψ2,n(0) = 0; Here an, bn satisfy

L(αS
n )[(an, bn)

T cos(nx/ l)] = (0, 0)T . (3.15)

3. Either Cn contains another (α, u, v) = (αS
m, uαS

m
, vαS

m
) for m 
= n, or the projection

projαCn of Cn on the α-axis satisfies

(−β + δ, β) ⊃ projαCn ⊃ (αS
n , β), (3.16)

for some δ > 0.

Proof If β satisfies (3.14), then α∗ < αS
n < β. Since we have verified conditions (H2)

in previous paragraphs, then a bifurcation of steady state solutions occurs at α = αS
n .

Note that we exclude L E (as defined in (3.12)), so α = αS
j is always a bifurcation

from a simple eigenvalue point. From the global bifurcation theorem in Shi and Wang
[14], �n is contained in a global branch Cn of solutions. Hence the results stated here
are all proved except (i) Cn consists of positive solutions only; and (ii) part 3.

Firstly we prove that any solution on Cn is positive if α ∈ (−β, β). This is true for
solutions on�n as β > 0 and αS

n +β > 0. Suppose that there is a solution on Cn which
is not positive. Then by the continuity of Cn , there exists an (α�, u�, v�) ∈ Cn such
that α� ∈ (−β, β), u�(x) ≥ 0, v�(x) ≥ 0 for x ∈ �, and there exists x0 ∈ �, such
that u�(x0) = 0 or v�(x0) = 0. Suppose that u�(x0) = 0, then u� reaches its minimum
at x0. If x0 ∈ �, then we get a contradiction with −d1�u�(x0) = (β − α)/2 > 0. If
x0 ∈ ∂�, then near x = x0, we have −d1�u�(x0) > 0 and x0 is the local minimum,
then ∂nu�(x0) < 0 which contradicts with the zero Neumann boundary condition.
Thus u�(x0) = 0 is impossible. Similarly we can prove that v�(x0) = 0 is impossible.
This shows that any solution of (3.1) on Cn is positive as long as α ∈ (−β, β).

Secondly we notice that when α = −β, the only solution of (3.1) is (u, v) =
((β−α)/2, 0). And as we have shown here the only bifurcation points for steady state
solutions are α = αS

n . Thus projαCn must have a lower bound which is strictly larger
than −β. From Lemma 3.1, all positive solutions of (3.1) are uniformly bounded for
α ∈ [−β, β−δ). Hence Cn cannot be unbounded for α ∈ [−β, β−δ). From the global
bifurcation theorem in [14], either Cn contains another (α, u, v) = (αS

m, uαS
m
, vαS

m
) for

m 
= n, or Cn is unbounded, or Cn intersects the boundary of (−β, β) × X × X ,
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Fig. 3 Graph of T (α, p) = 0 and D(α, p) = 0. (Left) β = 0.8, d1 = 0.2, d2 = 0.1 and l = 1; (Right)
β = 0.3, d1 = 0.01, d2 = 1 and l = 3. The horizontal lines are p = n2/ l2

where X is a function space. But either one in the latter two alternatives implies that
projαCn ⊃ (αS

n , β). This completes the proof. ��
Remark 3.4 1. The continuum Cn in Theorem 3.3 is possibly unbounded as α → β−

as the upper bounds in Lemma 3.1 tend to infinity asα → β−. But it is also possible
that Cn can be extended to α = β, which corresponds to the case a = 0 for the
original parameters. Since a ≤ 0 is not physically reasonable, we do not discuss
the case that a ≤ 0.

2. If d1 ≥ d2, then all the bifurcating steady state solutions on �n near α = αS
n are

unstable since αS
n > α∗ > β3√d1/d2 ≥ β3 = αH

0 , which is the primary Hopf
bifurcation point.

4 Numerical simulations and discussion

We have identified two critical parameter values for the system (1.2): α = β3, which
is the smallest Hopf bifurcation point, and α = α∗ (defined as in (3.11)). The constant
steady state (uα, vα) is locally asymptotically stable when α < min{β3, α∗}. When
β3 < α∗, then (uα, vα) loses the stability at α = β3 through a Hopf bifurcation; when
α∗ < β3, a steady state bifurcation is likely to happen for some α ∈ (α∗, β). The
left panel of Fig. 3 shows the graph of T (α, p) = 0 and D(α, p) = 0 with a set of
parameters so that β3 < α∗, while the right panel shows the one for the case α∗ < β3.

For the latter case, one can choose the length parameter l so that there are steady
state bifurcation points in (α∗, β). Indeed for the parameters given in the right panel
of Fig. 3, if we choose l = 3, then we have

αS
5 = 0.0183 < αS

6 = 0.019 < αS
4 = 0.0208 < αS

7 = 0.0216

< αS
8 = 0.0254 < αH

0 = 0.027 < αS
3 = αS

9 = 0.0303. (4.1)

We use several numerical simulations to illustrate and complement our analytical
results. The simulations are generated by using the Matlab pdepe solver which solves
initial-boundary value problems for parabolic-elliptic PDEs in 1-D. For the parameters
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Fig. 4 Numerical simulation of the system (1.2). (Left) u(x, t); (Right) v(x, t). Here α = 0.52, β =
0.8, d1 = 0.2, d2 = 0.1, l = 3, 0 ≤ t ≤ 300, and the initial values u0(x) = 0.8 + 0.1 cos(x); v0(x) =
1.03 + 0.1 cos(x). The solution converges to a spatially homogenous periodic orbit
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Fig. 5 Numerical simulation of the system (1.2). (Left) u(x, t); (Right) v(x, t). Here α = 0.02, β =
0.3, d1 = 0.01, d2 = 1, l = 3, 0 ≤ t ≤ 100, and the initial values u0(x) = 0.3 + 0.001 sin(x); v0(x) =
1.778. The solution converges to a spatially non-homogenous steady state solution

given in the left panel of Fig. 3 with l = 3, a simulation with α = 0.52 > αH
0 = 0.512

is shown in Fig. 4, which is dominated by the ODE limit cycle dynamics. On the
other hand, for the parameters given in the right panel of Fig. 3 with l = 3, several
steady state bifurcations occur at α-values smaller than αH

0 (see (4.1)). Figures 5, 6
and 7 show three different solution trajectories with different initial conditions. While
each shows a stationary spatial pattern, the one in Fig. 5 appears to have spatial period
3π/2, which corresponds to n = 4 (mode cos(4x/3)); the one in Fig. 6 appears to have
spatial period π , which corresponds to n = 6 (mode cos(2x)); and finally the one in
Fig. 7 is not spatially periodic but with peaks of different height. For the simulations
in Figs. 6 and 7, if the integration time is chosen longer, then the observed patterns
can switch to a different pattern. This suggests the spatial patterns observed in earlier
time may be unstable steady states. Note that such asymmetric peak solutions have
also been observed in [17] for (1.2). From (4.1), the parameter α = 0.02 in Figs. 5, 6
and 7 is between αS

6 = 0.019 and αS
4 = 0.0208.

Our analytical results given here and the numerical simulations guided by the ana-
lytical results show a rough picture of the dynamics in terms of system parameters.
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Fig. 6 Numerical simulation of the system (1.2). (Left) u(x, t); (Right) v(x, t). Here α = 0.02, β =
0.3, d1 = 0.01, d2 = 1, l = 3, 0 ≤ t ≤ 400, and the initial values u0(x) = 0.3 + 0.001 sin(3x); v0(x) =
1.778 + 0.001 cos(2x). The solution shows a spatially periodic pattern with wave length π
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Fig. 7 Numerical simulation of the system (1.2). (Left) u(x, t); (Right) v(x, t). Here α = 0.02, β =
0.3, d1 = 0.01, d2 = 1, l = 3, 0 ≤ t ≤ 400, and the initial values u0(x) = 0.3+0.001 sin(5x/3); v0(x) =
1.778 + 0.001 cos(5x/3). The solution shows a spatially asymmetric pattern

There are several parameter regimes where the dynamical behavior of (1.2) are dras-
tically different.

1. Whenβ is large, then for anyα ∈ (−β, β), d1, d2 > 0, the solution of (1.2) appears
to converge to the constant steady state. Indeed our analytical results show that
when 0 < β < min{β3, α∗}, (α∗ is defined in (3.11)), that is equivalent to

β > max

{

1, (
√

2 − 1)

√
d2

d1

}

, (4.2)

then (uα, vα) is locally asymptotically stable for any α ∈ (−β, β). The con-
vergence to the constant steady state can be easily seen by simulation, but the
analytical proof of global stability for PDE remains open. We also conjecture that
(uα, vα) is globally asymptotically stable for any α ∈ (−β, 0] regardless the value
of β (which corresponds to the case b < a in terms of original parameters.)
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2. When 0 < β3 < β < α∗ is satisfied, that is

(
√

2 − 1)

√
d2

d1
< β < 1, (4.3)

then there are a sequence of Hopf bifurcation points β3 = αH
0 < αH

1 < · · · <
αS

n < β where periodic orbits of (1.2) bifurcate out from the constant steady state
(uα, vα) (see Theorem 2.1). In particular, (uα, vα) loses the local stability to a spa-
tially homogenous periodic orbit at α = β3. On the other hand, since β < α∗, there
is no steady state bifurcation for any α ∈ (−β, β). Hence the parameter regime
given by (4.3) is dominated by time-periodic patterns but probably not stationary
spatially nonhomogeneous patterns. The number n of spatially nonhomogeneous
Hopf bifurcation points depends on the length parameter l.

3. When 0 < α∗ < β < β3 is satisfied, that is

1 < β < (
√

2 − 1)

√
d2

d1
, (4.4)

then there exist a number of steady state solution bifurcation points αS
j for m ≤

j ≤ n and m, n ∈ N where spatially nonhomogeneous steady state solutions
bifurcate from the constant steady state (uα, vα) (see Theorem 3.3). Again the
number n − m of spatially nonhomogeneous Hopf bifurcation points depends
on the length parameter l. On the other hand, since β < β3, there is no Hopf
bifurcation for any α ∈ (−β, β). Hence the parameter regime given by (4.4)
is dominated by stationary spatially nonhomogeneous patterns but probably not
time-periodic patterns.

4. Finally if

0 < β < min

{

1, (
√

2 − 1)

√
d2

d1

}

, (4.5)

then 0 < max{α∗, β3} < β. In this case both the results in Theorem 2.1 and the
ones in Theorem 3.3 are applicable. Hence possibly both Hopf bifurcations and
steady state bifurcations occur for α ∈ (min{α∗, β3}, β), and these bifurcation
points form an intertwining sequence of bifurcation points. The pattern formation
in the parameter regime (4.5) is perhaps the most complicated one.

We also comment that near the codimension-two Hopf–Turing bifurcation point,
where the two instabilities happen at the same parameters, these instabilities can com-
pete with each other which results in more complicated spatiotemporal patterns. The
Hopf–Turing point in this model is the intersection point of curves T (α, p) = 0 and
D(α, p) = 0 in Fig. 3. Some previous studies in Hopf–Turing bifurcations can be
found in [1,7,10].
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